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Abstract: This paper investigates a decision-making model for crop planting strategies based on 

intelligent optimization algorithms. Initially, we collected basic information on arable land, crops, 

and planting conditions for the year 2023, and performed data preprocessing to ensure the accuracy 

and reliability of the results. We then established a decision-making model aimed at maximizing total 

revenue and used MATLAB to solve the optimization model, obtaining the optimal planting plans 

for scenarios where the excess expected sales volume is either unsold or sold at 50% of the 2023 price. 

The article also constructs a linear programming model considering the overstocking issue due to 

excess sales beyond expectations and proposes a new objective function. Additionally, we 

incorporated uncertainties such as sales growth rates, yields, planting costs, and sales prices, and 

developed a robust optimization model. By analyzing the substitutability and complementarity of 

crops, we established a multi-objective optimization model and solved the optimal planting strategy 

using genetic algorithms. Finally, we verified the rationality of the model by comparing the planting 

revenue before and after optimization, and found that the revenue increased after optimization. 

1. Introduction 

This paper aims to study a decision-making model for crop planting strategies based on intelligent 

optimization algorithms, in order to provide scientific and rational planting plans for agricultural 

production [1]. Firstly, we collected relevant data on arable land, crops, and planting situations for 

the year 2023, and conducted meticulous data preprocessing to ensure the accuracy and reliability of 

the analysis results [2]. On this basis, we constructed a decision-making model aimed at maximizing 

total revenue and introduced linear programming methods to evaluate the impact of different planting 

schemes on the final total revenue [3]. Additionally, we considered two scenarios when sales volume 

exceeds expectations: unsold and sold at 50% of the 2023 price, and established corresponding 

optimization models for each. 

To more realistically simulate real-world data, we introduced uncertainty factors related to the 

expected growth rate of crop sales, sales volume, yield, planting costs, and sales prices, and 

constructed a robust optimization model. By analyzing the substitutability and complementarity 

between crops, we further established a multi-objective optimization model to determine the optimal 

planting strategy considering various complex factors [4]. 

The research in this paper not only provides a new decision support tool for crop planting strategies 

but also offers an effective solution for optimizing planting strategies through the application of 

genetic algorithms [5]. By comparing the planting revenue before and after optimization, we verified 
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the rationality of the model and found that the revenue increased after optimization, thereby proving 

the practical application value of the model in agricultural decision-making. 

2. Crop Planting Strategy Decision-Making Model 

We first collected the basic information on the existing arable land, crops, and the crop planting 

situation for 2023, along with relevant data. To prevent the impact of abnormal or missing data on 

the accuracy and reliability of the results, we performed data preprocessing. Using SPSS, we 

conducted data cleaning and validation, and found that there were no missing or outlier values. Then, 

we merged the crop-related data and planting information, ensuring that the land type and sales data 

corresponded to each crop. We initially establish a decision-making model for crop planting 

strategies,with the objective function being the maximization of total revenue, and constraints 

including that the planting area of each plot must not exceed its actual area. We use MATLAB to 

solve the optimization model and obtain the optimal planting plans for scenarios where the excess 

expected sales volume is either unsold or sold at 50% of the 2023 price. 

2.1. Linear Programming Model Construction 

2.1.1. Excess Sales Beyond Expectations Resulting in Overstock 

Crops with sales exceeding expectations cannot be sold but incur planting costs. Different planting 

schemes can be evaluated based on the final total revenue, thereby establishing the objective function. 

𝑚𝑎𝑥 𝐿 = ∑ (𝑝𝑖 × 𝑞𝑖) − ∑ (𝐴𝑖 × 𝑆𝑖)
𝑛
𝑖=1

𝑛
𝑖=1                                                (1) 

In this context, 𝐿  represents profit, 𝑝𝑖  represents the expected sales volume, 𝑞𝑖  represents the 

selling price, 𝐴 represents the cost, and 𝑠𝑖 represents the area of land planted. 

Each plot's planting area must not exceed the actual area available. 

∑ Sijt ≤ Eij                                                                                    (2) 

In which, 𝐸𝑖 represents the area of the 𝑖-th plot. 

The land must be planted with legume crops at least once within three years. 

∑ 1(𝑥𝑘
𝑡−1 = 𝑖) +𝑖∈𝐵 ∑ 1(𝑥𝑘

𝑡−2 = 𝑖)𝑖∈𝐵 ≥ 1                                                       (3) 

In which, 1(⋅) represents a function that takes the value 1 when crop 𝑖 is planted, and 0 otherwise, 

and 𝑥𝑘
𝑡  represents the crop 𝑖 planted in plot 𝑘 in year 𝑡. 

To facilitate management, the planting areas should not be too dispersed. The number of plots 

planted with each crop 𝑖 on arable land type 𝑙 ∈ 𝐿 should not exceed 1. 

∑ 1(𝑥𝑘
𝑡 = 𝑖) ≤ 1𝑘∈𝐺𝑙                                                                           (4) 

𝐺𝑙 represents the set of plots in arable land type 𝑙, and 𝑥𝑘
𝑡  represents the crop 𝑖 planted in plot 𝑘 in 

year 𝑡. 

|𝑄𝑖
𝑡 − 𝐷𝑖

𝑡| ≤ 𝜀𝑖                                                                               (5) 

𝐷𝑖
𝑡 represents the expected sales volume of crop 𝑖 in year 𝑡, and 𝑄𝑖

𝑡 represents the total yield 

of crop 𝑖 in year 𝑡. 

𝑄𝑖
𝑡 = ∑ ∑ × 𝐴𝑘,𝑗

𝑡𝑁
𝑘=1

2
𝑖=1                                                                       (6) 

The final model can be formulated as follows: 

𝑚𝑎𝑥 𝐿 = ∑ (𝑝𝑖 × 𝑞𝑖) − ∑ (𝐴𝑖 × 𝑆𝑖)
𝑛
𝑖=1

𝑛
𝑖=1                                                   (7) 

144



𝑠. 𝑡. =

{
  
 

  
 

∑ 𝑥𝑖𝑗𝑡 ≤ 𝑆𝑖𝑗

𝑆𝑖𝑗𝑡 ≥ 0

𝑥𝑖,𝑡
𝑡 ≠ 𝑥𝑖,𝑡

𝑡+1

∑ 1(𝑥𝑘
𝑡−1 = 𝑖) +𝑖∈𝐵 ∑ 1(𝑥𝑘

𝑡−2 = 𝑖)𝑖∈𝐵 ≥ 1

∑ 1(𝑥𝑘
𝑡 = 𝑖) ≤ 1𝑘∈𝐺𝑙

|𝑄𝑖
𝑡 − 𝐷𝑖

𝑡| ≤ 𝜀𝑖

                                            (8) 

2.1.2. Excess Sales at 50% of 2023 Prices 

For the part of sales that exceeds the expected volume, it is sold at 50% of the 2023 selling price. 

After calculation, the sales revenue after the price reduction is still higher than the planting cost. We 

establish a new objective function: 

𝑚𝑎𝑥 𝐿2 = ∑ [(𝑝𝑖 × 𝑞𝑖) + 0.5 × 𝑝𝑖 ×𝑚𝑎𝑥(𝑄𝑖
𝑡 − 𝐷𝑖

𝑡𝑛
𝑖=1 , 0) − 𝐴𝑖

𝑡]                           (9) 

𝑝𝑖 represents the expected sales volume, 𝑞𝑖 represents the selling price, 𝑄𝑖
𝑡 represents the total 

yield of crop 𝑖  in year 𝑡 , 𝐷𝑖
𝑡  represents the expected sales volume of crop 𝑖  in year 𝑡 , and 𝐴 

represents the cost. The constraints are the same as for the excess unsold portion.  

2.2. Model Solution 

First, we analyze the data to visually understand the distribution of the land area occupied by each 

plot. Using MATLAB, we create a plot showing the distribution of land area for each plot as shown 

in Figure 1. 

 

Figure 1 Plot of land area distribution 

Using MATLAB to create a scatter plot to display the relationships between yield per acre, sales 

price, and planting cost, the results are shown in Figure 2. The scatter plot illustrates the relationships 

among yield per acre, sales price per unit, and planting cost. From the plot, it can be observed that 

there is a certain positive correlation between yield per acre, sales price per unit, and planting cost. 

That is, as the yield per acre increases, the planting cost and sales price per unit tend to be higher as 

well. 

 

Figure 2 Scatter plot of the three indicators 
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The expected sales volume, planting cost, yield per acre, and sales price of crops are expected to 

stabilize compared to 2023. Our dataset provides the planting cost, yield per acre, and sales price. For 

the expected sales volume, it is obtained by multiplying the crop planting area by the yield per acre 

to get the expected sales volume of crops for 2023. The expected sales volume for the future is 

assumed to remain stable relative to 2023, providing a mathematical basis for the optimization of 

subsequent decision-making models. 

Using MATLAB to solve the optimization model, we can obtain the optimal planting plan for the 

part of the expected sales volume that is unsold, such as planting 3.5 mu of soybeans in plot A3 in 

the first season of 2024. Similarly, using MATLAB to solve for the optimal planting plan where the 

excess part is sold at 50% of the 2023 price, such as planting 3.5 mu of soybeans in plot A3 in the 

first season of 2024. 

3. Model Optimization 

3.1. Robust Optimization Considering Uncertainty 

In order to more accurately simulate real-world data, we incorporate uncertainties related to the 

annual growth rate of expected sales for wheat and corn, the sales volume of other crops, yield per 

acre, crop planting costs, the sales prices of vegetable crops, and the sales prices of edible fungi. By 

establishing a robust optimization model, we aim to develop the optimal crop planting plan for rural 

areas from 2024 to 2030. We define uncertain parameters as follows: the expected sales growth rate 

for wheat and corn is between 5% and 10%, denoted as 𝛼1 and 𝛼2, respectively. The expected sales 

volume of other crops is subject to ±5% change relative to 2023, with a change coefficient 𝛽𝑖. The 

yield per acre of crops can vary by ±10%, with a change coefficient 𝛾𝑖. Planting costs are expected 

to increase by about 5% annually, with a growth coefficient 𝛿. The sales prices of vegetable crops are 

expected to increase by about 5% annually, with a growth coefficient 𝜆𝑖 (where 𝑖 refers to vegetable 

crops). The sales prices of edible fungi are expected to decrease by 1% to 5% annually, with a decline 

coefficient 𝜁𝑖 (where 𝑖 refers to edible fungi). 

The objective function is to maximize the total revenue. 

𝑚𝑎𝑥𝐿 =∑ ∑ ∑ 𝑥𝑖𝑗𝑡𝑞𝑖𝑡𝑦𝑖𝑡 − ∑ ∑ ∑ 𝑥𝑖𝑗𝑡𝐴𝑖𝑡𝑗𝑖
2030
𝑡=2024𝑗𝑖

2023
𝑡=2024                             (10) 

In which, 𝑞𝑗𝑡 represents the sales price of the \𝑗-th crop in 2023, 𝑟𝑞𝑗𝑡 is the growth rate of its sales 

price, 𝑦𝑗𝑡 is the yield per acre, 𝑟𝑦𝑗𝑡 is the growth rate of the yield per acre, 𝐴𝑗𝑡 is the planting cost, and 

𝑟𝐴𝑗𝑡 is the growth rate of the planting cost. 

The planting area of each plot must not exceed the actual area available. 

∑ 𝑥𝑖𝑗𝑡 ≤ 𝑆𝑖𝑗                                                                             (11) 

𝑠𝑖 represents the area of the 𝑖-th plot. 

Considering the uncertainty in yield per acre, the total output of each crop fluctuates within a 

certain range of the expected sales volume. 

(1 − 𝛾𝑖)𝑦𝑖
𝑡 ∑ 𝑥𝑖𝑗𝑡 ≤ 𝐷𝑖

𝑡(1 + 𝛽𝑖)𝑗                                                    (12) 

𝐷𝑖
𝑡(1 − 𝛽𝑖) ≤ (1 + 𝛾𝑖)𝑦𝑖

𝑡 ∑ 𝑥𝑖𝑗𝑡𝑗                                                          (13) 

𝐷𝑖
𝑡 represents the expected sales volume of the 𝑖-th crop in year 𝑡.  

To meet the requirements of discontinuous planting and planting legume crops at least once 

every three years, we introduce a binary variable 𝑧𝑖𝑗𝑡 to indicate whether the 𝑖-th crop is planted 

in year 𝑡, and an auxiliary variable ℎ𝑖𝑗
𝑡  to represent the last time the 𝑖-th crop was planted on the 

𝑗-th plot. 

𝑧𝑖𝑗𝑡 + 𝑧𝑖𝑗𝑡−1 + 𝑧𝑖𝑗𝑡−2 ≤ 2                                                                (14) 

∑ ∑ 𝑧𝑖𝑗𝑡 ≥ 1𝑖∈𝐷
2025
𝑡=2023                                                                     (15) 
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ℎ𝑖𝑗𝑡 = (𝑡 − 1)(1 − 𝑧𝑖𝑗𝑡) + 𝑧𝑖𝑗𝑡 ℎ𝑖𝑗𝑡−1 + 3𝑧𝑖𝑗𝑡(1 − 𝑧𝑖𝑗𝑡−1)                            (16) 

In which, 𝐷 represents the set of legume crops. 

Considering the uncertainty in sales prices and planting costs, we define upper and lower bounds 

for them: 

𝑝𝑖𝑡 ≤ 𝑝𝑖𝑡 ≤ 𝑝𝑖𝑡                                                                     (17) 

𝑐𝑖𝑡 ≤ 𝑐𝑖𝑡 ≤ 𝑐𝑖𝑡                                                                     (18) 

In which, 𝑝𝑖𝑡 and 𝑝𝑖𝑡 represent the lower and upper bounds of the sales price for the 𝑖-th crop in 

year 𝑡, respectively, and 𝑐𝑖𝑡 and 𝑐𝑖𝑡 represent the lower and upper bounds of the planting cost for the 

𝑖-th crop in year 𝑡, respectively. 

3.2. Analysis of Crop Substitutability and Complementarity 

Based on practical life experience and research, the existence of substitutability among crops[5] 

allows for more flexible and diverse planting strategies, which can better reduce planting risks. For 

example, when the expected sales volume of a certain crop decreases or the planting cost increases, 

one can opt to plant a substitutable crop. The substitution relationships between crops under different 

circumstances can be represented as follows: 

𝑚𝑖𝑛{
𝑐𝑖𝑗
(1)

𝑐
𝑖𝑗
(1)
+𝑐

𝑖𝑗
(2) ,

𝑐𝑖𝑗
(2)

𝑐
𝑖𝑗
(1)
+𝑐

𝑖𝑗
(2)}                                                           (19) 

Where, 𝑐𝑖𝑗
(1)

 and 𝑐𝑖𝑗
(2)

 represent two crops that are substitutable in the 𝑗-th quarter of the 𝑖-th year. 

After importing the data on sales volume, selling price, and cost into SPSS for normality testing, 

it can be concluded that the expected sales volume, selling price, and cost are normally distributed. 

Furthermore, by conducting a Spearman correlation analysis on the same data in SPSS [6], we obtain 

a correlation coefficient table and a corresponding heatmap, as illustrated in Table 1. 

Table 1 Correlation Coefficient Table 

Example column 1 Planting Cost 

(Yuan/Mu) 

Sales Price 

(Yuan/Jin) 

Expected Sales 

Volume 

Planting Cost (Yuan/Mu) 1(0.000***) 0.458(0.000***) -0.629(0.000***) 

Sales Price (Yuan/Jin) 0.458(0.000***) 1(0.000***) 0.011(0.921) 

Expected Sales Volume -0.629(0.000***) 0.011(0.921) 1(0.000***) 

The table above shows the parameter results of the model test, including the correlation coefficient 

and the significance P-value. To test whether there is a statistically significant relationship between 

X and Y, we check if the P-value is significant (P < 0.05). This indicates the presence of a correlation 

between the two variables, and the sign and magnitude of the correlation coefficient further describe 

the direction and strength of the relationship. 

Table 2 Linear Regression Analysis Results Table (n=87) 

Example 

text 1 

Unstandardized 

Coefficients 

Standardized 

Coefficients 
t P VIF R² 

Adjusted 

R² 
F 

 B Standard 

Error 

Beta 

Constant 18.75 14.206 - 1.32 0.191 - 

0.707 0.697 

F=66.82 

P=0.000 

*** 

Planting 

Cost  
-0.011 0.005 -0.24 -2.36 

0.020 

** 
2.931 

Sales 

Price  
1.651 0.44 0.349 3.74 

0.000 

*** 
2.452 

Planting 
4.667 0.404 0.789 11.5 

0.000 

*** 
1.322 

Dependent Variable: Expected Sales Volume 

Note: ***, **, * represent the significance levels of 1%, 5%, and 10%, respectively. 
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Furthermore, we conducted a linear regression analysis on the expected sales volume, selling price, 

and cost using SPSS, and the results are shown in Table 2 as follows: 

The analysis of the F-test results indicates a significance P-value of 0.000***, which is significant 

at the conventional levels. This allows us to reject the null hypothesis that the regression coefficients 

are zero, suggesting that the model essentially meets the requirements. Regarding the issue of variable 

collinearity, all Variance Inflation Factors (VIFs) are below 10, indicating that there is no problem of 

multicollinearity in the model. Therefore, the model is well-constructed. 

The formula for the model is as follows: 

𝑦 = 18.751 − 0.011 × 𝐴𝑖 + 1.651 × 𝑞𝑖 + 4.677 × 𝑆𝑖                             (20) 

𝐴𝑖 represents the planting cost, 𝑞𝑖 represents the sales price per unit, and 𝑆𝑖 represents the planting 

area of the crop. 

From Figure 3, the fitting effect diagram can be seen, indicating a good fit. 

 

Figure 3 Fitting effect diagram 

3.3. Construction of Multi-Objective Optimization Models 

Considering the substitutability between crops, the correlation between expected sales volume, 

selling price, and cost, and taking into account various complex factors to determine the optimal 

planting strategy, we establish a multi-objective optimization model. 

The objective function 1 is to maximize the total revenue. 

𝑚𝑎𝑥𝐿𝑖𝑗 = (𝑄𝑘 × 𝑆𝑖𝑘 × 𝑞𝑖) − (𝐴𝑖 × 𝑆𝑖𝑘)                                             (21) 

In which, 𝑄𝑘 × 𝑆𝑖𝑘 represents the total yield of crop 𝑖 on plot 𝑘, 𝑞𝑖 represents the sales price per 

unit of crop 𝑖, and 𝐴𝑗 represents the planting cost.  

The objective function 2, aiming to minimize risk, is as follows: 

𝑍2 = ∑ ∑ [∑ 𝑥𝑖𝑗𝑡𝑦𝑖𝑡(1 + 𝛽𝑖
𝑡−2023) − 𝑑𝑖𝑡(1 + 𝛾𝑖

𝑡−2023)𝑗 ]𝑡
𝑛
𝑖=1

2
                       (22) 

The constraints are the same as those in section 3.1. 

4. Optimal Planting Strategy Based on Genetic Algorithms 

Using genetic algorithms to solve the established model, we perform operations such as individual 

encoding, selection, crossover, and mutation on the population, iterating and optimizing continuously 

to obtain the optimal planting strategy. Some of the optimal planting plan data are shown in Table 3.  
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Table 3 Partial Data of the Optimal Planting Plan 

Season Plot Name Soybeans Black Beans Red Beans Mung Beans Cowpeas 

1 A1 8 8 8 8 8 

1 A2 0 0 0 5.5 0 

1 A3 0 0 3.5 0 3.5 

1 A4 0 7.2 7.2 7.2 0 

1 A5 6.8 6.8 6.8 0 0 

1 A6 5.5 0 0 5.5 5.5 

1 B1 6 6 0 6 0 

1 B2 0 0 0 4.6 4.6 

1 B3 4 4 4 0 0 

1 B4 2.8 2.8 0 2.8 0 

1 B5 2.5 0 0 2.5 2.5 

1 B6 0 8.6 8.6 8.6 0 

1 B7 0 5.5 5.5 0 0 

1 B8 0 0 4.4 4.4 4.4 

Table 3 presents partial data of the optimal planting plan under the condition that the excess sales 

volume is sold at 50% of the 2023 sales volume. For example, in the first season of 2024, soybeans 

are planted on 8 mu of Plot A1. 

Randomly select a crop for single-objective and multi-objective optimization analysis. First, 

calculate the average planting cost of the crop for each plot type, then determine the maximum cost 

for the sample crop's predicted land area in 2024. Since cost and revenue are negatively correlated, 

we can approximately determine the relationship between the planting revenue of soybeans before 

and after optimization in 2024, as shown in Figure 4. 

 

Figure 4 Sample revenue comparison chart 

In Figure 4, Q2 represents the revenue fitting curve of soybeans before optimization, and Q3 

represents the revenue fitting curve of soybeans after optimization. From the figure, it can be seen 

that Q3 is greater than Q2, which indicates that the model is reasonable. The revenue result after 

optimization is higher than the revenue result before optimization, with an increase of 6.78. 

5. Conclusion 

This study successfully developed and validated a decision-making model for crop planting 

strategies based on intelligent optimization algorithms. By integrating data on arable land, crops, and 

planting conditions, as well as uncertainties in sales volume, costs, and prices, the model effectively 

optimizes planting plans to maximize total revenue. The application of genetic algorithms further 

enhances the model's capability in handling complex multi-objective optimization problems, and 
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experimental results indicate that the optimized planting strategies can significantly improve 

agricultural profits. Future research can explore a wider range of intelligent optimization algorithms 

to adapt to a broader range of agricultural environments and conditions. 
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